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A continuous random walk procedure for solving some elliptic partial differential equations 
at a single point is generalized to estimate the solution everywhere. The Monte Carlo method 
described here is exact (except at the boundary) in the sense that the only error is the 
statistical sampling error that tends to zero as the sample size increases. A method to estimate 
the error introduced at the boundary is provided so that the boundary error can always be 
made less than the statistical error. 

INTRODUCTION 

Monte Carlo methods have been suggested [ 1, 21 for solving elliptic partial 
differential equations at a single point. The theory described in [ 1 ] can be generalized 
to estimate the solution everywhere. 

We shall show how to solve some partial diferential equations of the form 

u,, + u,, - a224 = 0, a* const. (1) 

This is an important class of partial differential equations because any elliptic partial 
differential equation with constant coefftcients can be reduced, by suitable transfor- 
mations [ 31 to the canonical form of Eq. (1). 

DIFUCHLET PROBLEM IN POLAR COORDINATES 

We shall consider solving Eq. (1) with u specified on the boundary. A separation 
of variables in polar coordinates yields [l] 

u(r, 0) = $2, Z,(m) + 5 Zn(ar)(a, cos n8 + b, sin no), 
n=1 

(2) 
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where the I,, are the modified Bessel functions. The expansion coefficients are 
obtained in the usual manner by integrating with cos n6 and sin nf3 to give 

u(r, 19) sin nf9 df9. 

(3) 

These coefficients may be estimated, however, by sampling ei uniformly on [0, 27r] 
and using 

n 2 lM 
a 

PI 
= - - C ~(r, ei) cos nei, 

I,(ar) A4 i= * 

6, = & & $ UP-, ei> sin nei. 
l 1 

(5) 

Now if we wish to solve Eq. (1) in the vicinity of a point P, (see Fig. 1) we draw the 
largest circle (with center at PO) that lies entirely within D and proceed to sample the 
ei of Eqs. (5) and (6). We do not know U(I, f?,), and so we use the single point theory 
[ 1 ] to get a one-particle estimate ti(~, Bi) and then use 

: 2 lM 
a”=ln(aP)Miz, 

T q~, et) cos tie:, 

J= 2 - l- F L(r, ei) sin ne,. 
I,(ar> A4 irl 

Thus, the solution at any point inside D (the solution may be extented for p > r 
because all the derivatives exist) may be estimated by: 

u^@, 4) = f&l,(crp) + + I,(crp)(a, cos(n4) + Z, sin(@)). 
n=, 

(9) 

Note that N has replaced infinity as the upper limit on the sum. The reasons for this 
replacement are twofold. First, as a practical matter, we simply cannot sum an 

FIGURE 1 
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infinite number of terms; and second, there are mathematical difficulties for p > r as 
N approaches infinity. 

The mathematical difficulties arise from the ~/Z,(W) of Eqs. (7) and (8) that is 
multiplied by the Z,(crp) of Eq. (9) to give the ratio R, = Z,(a~)/Z,(ar). Recalling that 

Z”(Z) = (l/n!)(z/2>n[ 1 + (z/2)2/(l!(n + 1)) + (z/2)4/(2!(n + l)(n + 2)) + a.*], (10) 

we see that R, - ao as n + co as long as p < r. Thus for p < r (and a real) errors in 
estimating (see Eqs. (3) and (4)) 

and 

c,= 7z .r u(r, 0) cos ne dB 
--II 

s, = fn u(r, 13) sin ne de 
1-n 

become progressively less important to u^ as II + co. For p > r, R, --t co as n + 00, 
and thus any statistical errors are magnified. For any finite m, we can make the 
statistical estimation good enough (by increasing the number of samples) so that the 
error in the mth term is arbitrarily small. Consider the term a, = Z,Jdp) a, cos me of 
Eq. (9). Let e,,, be the error in &; then the error in a, is E, = e, IZ,(ap) cos meI. In 
a bounded domain, however, IZ,(ap) cos me] can be bounded by some number B, 
and thus E, < B,e,,,. Furthermore, the central limit theorem guarantees that e, 
decreases as M-l’* (M = the number of samples), so that E, < B,,,e,,, will also 
decrease as M-‘12. 

As a practical matter, one should not extend the solution outside the circle without 
checking to see if u^ matches the boundary conditions reasonably well. The estimated 
solution u^ must satisfy Eq. (1) because of the manner in which it is defined. If u^ also 
matches the boundary conditions, then u^ is the solution we seek. 

CONVERGENCE OF THE ESTIMATES FOR a, AND b, 

In [l] it was shown that the estimate for a, converged for real a. To prove that the 
estimates for (I, and b, converge, one need only replace the u of [ 1, Eq. (24)] with 
u cos no,, and u sin &,,, where f&, is the angle selected when departing the initial point 
P 0’ 

AN ITERATIVE MONTE CARLO APPROACH 

Using the superposition principle, we may write the solution to Eq. (1) as 

u(r, e) =f(r, e) + gk e), (11) 

where f is any function that satisfies Eq. (1). In this case, g must also satisfy Eq. (1) 
subject to the boundary condition that g on the boundary be equal to u on the 
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boundary minus f on the boundary. If f is approximately equal to u then the 
boundary values of g will be small, leading to a small absolute error when estimating 
g by the Monte Carlo method described here. In other words, we shall solve for g, the 
(residual) difference between the true solution u and the best estimate of u, which we 
shall call J We know (from Eq. (9)) that choosing f=f”(r, 6) = G(r, 8) will ensure 
that f satisfies Eq. (I), because z2(r, 0) is always a sum of functions that individually 
satisfy Eq. (1). Furthermore, choosing 

f”+‘(r, 8) =fn(r, 0) + $(r, 0) (12) 

also guarantees that f "' satisfies Eq. (1) by induction on n, becausef’ and all the 
f” satisfy Eq. (1). Thus we estimate 

zP(r, 0) =f”(r, 8) + g”(r, S) 

and then choose f a + 1 = P for the next iteration. 

(13) 

Example. Consider solving Eq. (1) in a rectangle of dimensions 71/2 by 1 subject 
to the boundary conditions in Fig.2. The solution to this problem is u(x, y) = sin x 
because sin x both satisfies Eq. (1) and meets the boundary conditions. Now take a 
circle of radius 0.5 centered on (0.2n, 0.5) and estimate the solution using the 
iterative Monte Carlo method described earlier. In particular, suppose we wish u at 
x, = 0.2?r + 0.4, y, = 0.5. 

The approximate solution was taken to be (J,(r) = I,,(k)) (i.e., a = i in Eq. (1) 

G(r, 0) = $,J,(r) + + J,(r)(d, cos nl? + i, sin no), 
,=I 

(14) 

where the coefficients were taken to be zero until the estimate was at least three times 
the standard deviation of the estimate. Furthermore, the sample size on each iteration 
was doubled if the estimated error in ti(x, = 0.2~ + 0.4, y, = 0.5) was more than 0.7 
times the estimated error on the previous iteration, otherwise the sample size was 
taken to be the same size as on the previous iteration. 

Table I shows how the error in 6(x1, y,) decreases with the number of iterations 
and Table II compares the estimated coefficients after 29 iterations with the true 
values obtained by using Eqs. (3) and (4) with the true solution and Bessel’s Integral 

xo=.27r yg.5 

x,*.2u+.4 y,=.S 

FIGURE 2 



REGIONALMONTE CARLO SOLUTIONS 285 

TABLE I 

Iteration 

2 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

samples 

100 100 0.80428 8.1E-2 
200 300 0.87097 l.OE - 2 
200 500 0.85455 2.6E - 3 
200 700 0.85640 4.6E - 4 
200 900 0.85565 1.4E - 4 
200 1100 0.85633 1.8E - 4 
400 1500 0.85645 9.7E - 5 
400 1900 0.8565 1 7.8E - 5 
800 2700 0.85642 l.lE-5 
800 3500 0.85643 4.&E - 6 
800 4300 0.85643 8.5E - 7 
800 5100 0.85643 4.1E - 7 
800 5900 0.85643 5.6E - 1 

1600 7500 0.85643 3.5E - 7 
1600 9100 0.85643 2.1E-7 
1600 10,700 0.85643 1.3E - 7 
1600 12,300 0.85643 9.9E - 8 
3200 15,500 0.85643 6.4E - 8 
3200 18,700 0.85643 7.9E - 8 
6400 25,100 0.85643 1.7E - 8 
6400 31,500 0.85643 1.9E - 8 

12,800 44,300 0.85643 1.5E - 8 
25,600 69,900 0.85643 6.7E - 9 
25,600 95,500 0.85643 5.9E - 9 
5 1,200 146,700 0.85643 5.OE - 10 
5 1,200 197,900 0.85643 2.8E - 10 
51,200 249,100 0.85643 1.2E - 10 
5 1,200 300,300 0.85643 5.8E- 11 
51,200 35 1,500 0.85643 2.1E- 11 

Total 
samples 

Last 

a; nonzero U(X,YY,) 
%9Yr) (error) COEFF -u^(X,,Y,) 

- 5.2E - 2 

A(l) -1.5E - 2 

A(2) 1.9E - 3 

A(3) 3.3E - 5 

A(3) 7.9E - 4 

A(3) l.OE - 4 

A(3) -2.OE - 5 

A(3) -7.7E - 5 

A(4) 8.5E - 6 

A(4) 3.9E - 6 

A(5) 1.9E - 7 

A(5) -2.4E - 7 

A(5) -l.lE-6 

A(5) 1.6E - 6 

A(5) 8.5E - 7 

-4th) 2.7E - 7 

A(6) 1.8E - 8 

A(6) -2.2E - 7 

A(6) 2.2E - 7 

‘4(e) -2.OE - 8 

A(6) -2.lE - 8 

‘4(b) -5.4E - 8 

A(6) 7.2E - 9 

A(7) -4.OE - 9 

A(7) 8.6E - 10 

A(7) -5.7E - 10 

‘4@) 1.8E - 10 

A(8) 2.4E - 11 

A@) 5.9E - 12 

Note. Mean time per sample is independent of the iteration index. 

[5]. Recall that the estimated coefficients were taken to be zero unless the estimate 
was at least three times the standard deviation of the estimate. The mean time per 
sample is independent of the iteration number. 

COMMENTS ON THE BOUNDARY ERROR 

As noted in [l] there is an error made at the last step of the random walk unless 
there is a nonzero probability of actually sampling the boundary points. For special 
geometries, one may choose to sample points on shapes other than the circle 
discussed here so that there is a nonzero probability of sampling the boundary. In 
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TABLE II 

Comparison After 29 Iterations (all b, = l?, = 0) 

True 

a, 

Estimated 
: 
a, 

n=O 1.17557050 1.17557050 
I 1.61803399 1.61803399 
2 -1.17557050 -1.17557050 
3 -1.61803399 -1.61803399 
4 1.17557050 1.17557050 
5 1.61803399 1.61803407 
6 -1.17557050 -1.17561773 
7 -1.61803399 -1.61900777 
8 1.17557050 1.11109851 

u 0” 

1.9E- 11 
6.7E - 11 
4.4E - 10 
5.OE - 9 
8.1E - 8 
1.6E - 6 
3.9E - 5 
l.lE-3 
3.4E - 2 

!u error 
ub,(6, = 0 all n) 

1.6E- 11 
1.9E- 11 
2.OE - I1 
2.OE - 11 
2.1E- 11 
2.1E- 11 
2.1E- 11 
2.1E- 11 

other words, a shape can be chosen such that the boundary and a portion of the 
shape coincide for some nonzero length [ 11. 

In general, however, the random walks must terminate not on the boundary but 
within some E of the boundary because the circle (or other shape) that we are 
sampling only coincides with the boundary at a finite number of points. Thus, a small 
error is introduced when we take the value at the end of the random walk to be the 
boundary value. This boundary error can be easily estimated during the Monte Carlo 
solution and E can be adjusted on each iteration to ensure that the boundary error 
always remains less than the statistical error. 

To estimate the boundary error we occasionally (say, on every tenth sample) 
require the random walk to get within some smaller E, say s/10, of the boundary. We 
then score the dzfirence in the estimates of the coefficients between applying the E or 
s/10 rule for termination to the sume random walk. Thus we can estimate how 
different our answer would have been if the random walks had terminated within s/10 
of the boundary rather than within E. (For the example E = lo-‘* and the difference 
in a, between using s/10 and E was -2.lE - 12, significantly less than the statistical 
error of 1.9E - 11). 

APPLICATION TO OTHER COORDINATE SYSTEM 

There is nothing special about the polar coordinate expansion coefficients. The 
expansion coefficients can be generated for any coordinate system in which Eq. (1) is 
separable because the expansion coefficients always involve an integral that may be 
estimated by Monte Carlo. In the next section, for example, we show how to estimate 
the expansion coefficients in Cartesian coordinates. 
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DIRICHLET PROBLEM IN CARTESIAN COORDINATES 

If the variables are separated into x,y coordinates, the solution to 

L(y) fk$xiq f4(y) 

030 f,(x) a, 0 

with the indicated boundary conditions fi is U(X, y) = u,(x, y) + uz(x, y) + u3(x, y) + 
u4(x, y), where (see Appendix) 

q(x,y)= 2 
2 

n=l 
--!- j’f,(x’) sin % dx’ 

sinh{(a* + (nn/a)‘)“’ b} a ,, 

x sin(nnx/a) sinh{ (a’ + (n~/a)‘)“‘(b - y)), 

U*(X,Y)= c 
2 

?I=1 
Ijbf2(yr) sin F dy’ 

sinh{(a* + (n@)‘)“’ a} b o 

x sin(nqJ/b) sinh{(a* + (nn/b)2)“2(u -x)}, 

$(X,Y)= -T 
2 

,kl sinh{(a* + (n~/u)‘)“’ b} 

X sin(nlrx/u) sinh{ (a’ + (n~~/u)*)“* y}, 

U&Y)’ -Y 
2 

,5, sinh((a2 + (m/b)‘)“’ a} 

X sin(nzy/b) sinh{ (a’ + (m/b)‘)“’ x}. 

Thus, we need to estimate 

C n1=- : J:Ji(x)sinFdx, c,,=$j~f,(y)sin~& 

c n3 =- 1 j:f,(x) sin F dx, c,,~ = +jobf4(y) sin F du. 

These are easily estimated in the following manner: 

en, =- ;, m~,f,W sin +, x, uniform on (0, a). 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Again, we do not knowf,(&J, so we use the single point theory to get a one particle 
estimate and we write 

For convenience let d^,, be the entire expansion coefficient, that is 

a,, = zn,(2/sinh{ (a’ + (n~/~)*)~‘~ b)). (22) 

As with the circular method (Eq. (lo)), f i we go outside the rectangle, the higher 
order terms have factors like 

R, = sinh{(a2 + (nrr/~)‘)“~(b -Y)}/sinh{(a’ + (~/a)~)“~ b) (23) 

that tend to infinity with n. 

CONVERGENCE OF THE ESTIMATES FOR THE c,, 

The convergence properties for the c,,~ estimates are essentially the same as for the 
a, and b, estimates. For example, with a change of variables (0, = (27cla) x), 

+jIfl(x) sin F dx=& 2nh,(80)sin~dB,, 
I wo) =f,w. (24) 

0 

To prove that the estimate for c,i converges (for a real), one need only replace u of 
[ 1, Eq. (24)] with h, sin(n8,/2). 

COMMENTS 

As mentioned earlier, the technique may be applied in any separable coordinate 
system. Thus, the technique can easily be generalized to N dimensions; in general, 
Monte Carlo methods become more competitive with deterministic methods as the 
dimension and complexity increase. Although this technique is undoubtedly currently 
much slower than standard deterministic techniques, it should be remembered that 
special sampling techniques can theoretically produce zero-variance solutions. In 
Monte Carlo particle transport problems, for example, it is not uncommon to see 
factors of IO6 to 10’ improvement over an analog Monte Carlo sampling. 
Furthermore, automatic learning procedures have been developed [6] to 
automatically produce low-variance samplings for the particle transport field. 
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APPENDIX: SEPARATION OF VARIABLES SOLUTION IN CARTESIAN COORDINATES 

Consider the equation 

Now separate variables 

u,, + uyy - a2u = 0. (25) 

4% Y) =x(x> Y(Y) (26) 

and substitute into 

f’Y+~Y”-a’jyY=0 or (-f/x) + a2 = (Y”/Y) = -p2, (27) 

with separation constant /I’. 
Suppose we wish to solve the problem 

0,b u=o a,b 

u=o flu=/ 

070 u=o a,0 

The solution to the Y equation is 

Y=ccos&+dsin@ (28) 

Imposing the boundary conditions Y(0) = Y(b) = 0 results in the set of solutions 
(with p, = nx/b) 

Y, = d, sin p, y. (29) 

The solution to the x equation is (with yi = a2 + pi) 

x = e, cash ynx +f, sinh Y,,x. 

Imposing the boundary condition x(O) = 0 implies e, = 0. We thus have 

(30) 

u(x, Y) = f g, sinCOn Y) sin W,x). (31) 
n=1 

Now we may determine the g, by applying ~(a, y) =f( y) in Eq. (3 l), multiplying by 
sin p,,, y, and integrating over 0 < y < b to obtain 

(32) 
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Thus 
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u(x, y) = 2 
2 

n=1 sinh((a* + (nr/b)‘)“’ a} 

x sin(nlrylb) sinh{ (a’ + (n~/b)‘)“’ x}. 

This is essentially u4(x,y) of Eq. (18). The other u[(x, y) may be obtained by 
inspection. 
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